Home » Technology » What the DNA of Ancient Humans Reveals About Pandemics

What the DNA of Ancient Humans Reveals About Pandemics

What the DNA of Ancient Humans Reveals About Pandemics

After Hunt’s unusual flight home, Shanidar Z made it safely to the University of Cambridge for digital scanning and will eventually be transferred back to northern Iraq to feature as the centerpiece of a new museum. The skeleton could be up to 90,000 years old, but its DNA will be used to further understanding of modern human history—by analyzing and statistically comparing the ancient DNA against the genomes of modern populations, “to demonstrate when different population groups parted company,” Hunt says.

Once a population splits into two or more reproductively isolated groups, the genes in each new population will evolve gradually in new directions as a result of random gene mutations as well as exposure to various environmental factors that prevent successful reproduction—coming into contact with new diseases, for instance.

It’s through work like this that scientists have been able to chart the migration of different populations of humans and Neanderthal groups around the planet over the last 70,000 years, and also bust some myths about their habits and migration patterns. We now know that humans and Neanderthals interbred quite commonly, and that Neanderthal communities were likely more caring and intelligent than we’ve previously given them credit for. According to Hunt, evidence of burial rituals at the Shanidar Cave “suggests memory, and that they looked after their injured and sick members.”

See also  'Stranger Things' Season 4 Recap: Episode 9 Easter Eggs and Ending Explained

Separately, analysis of ancient DNA against the modern human genome has revealed that we still carry some genetic sequences that were present in people living millennia ago. Such analysis even helped to identify a new subspecies of humans 12 years ago—this discovery of Denisovans, believed to have existed across Asia around 400,000 years ago,…

Read full article on www.wired.com